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General Image Operations

o Three type of image operations
Point operations
Geometric operations
Spatial operations
Global Operations (Freq. domain)

Multi-Resolution Operations




Point Operations




Point Operations

Operation depends on Pixel's value.
Context free (memory-less).
Operation can be performed on the Histogram.

Example:

gl y)=a- f(x,y)+p



Geometric Operations
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Geometric Operations

Operation depend on pixel's coordinates.
Context free.
Independent of pixels value.

Example:

glx,y)=f(x+a,y+b)



Spatial Operations




Spatial Operations

Operation depends on Pixel's value and coordinates.
Context dependant.

Spatial v.s. Frequency domain.

Example:

gle,y)= D fli,j)/n

I,jeN(x,y)



Global Operations




Global Operations

Image domain

Freq. domain




Multi-Resolution

Low resolution

?

v

High resolution







1D Continuous Convolution

Convolution is defined as follows:

1. Flip g(a) =2 g(-a)

= 2. Shift g(X-a) _op < ¢ < oo
filx)* g(x)= J fla)e(x —a)da 3. Compute area overlap
f(a)g(x-a)
oo

Convolution is commutative:

Think of f(x) as the
_ image and g(x) as the
f{"l:') g g ( .T) =g (x) * f (x :] mask although you can
reverse their roles!



Example 1

o0

F(x) * g(x) = J fla)g(x — a)da
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Example 2

Compute the convolution of the following two functions:




Example 2 (cont’d)

Stepl: find g(—a)

Step2: find g(x — a)

glx — ik}

)




Example 2 (cont’d)

Step 3: Compute the integral for —oo<x <00

L= o]

f(x)* gx) = | fla)g(x —a)da
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Example 2 (cont’d)

x/2 0<x<1
fx)*g(x)=41-x/2 1=<x<2
0 elsewhere




Important Observations

The of f(x) * g(x) is equal to the of f(x) the of g(x)
fra) #el
! extent = 1 extent = 1
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Important Observations (cont’d)

For every x, the limits of the integral are determined as follows:
MAX ( limit of f(x), limit of g(x-a))
MIN ( limit of f(x), limit of g(x-a))

Case2:0<x<1
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Example 3
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Example 3 (cont’d)
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Example 3 (cont’d)
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Discrete Convolution

Replace integral with summation
Integration variable becomes an index.

Displacements take place in

o0

J(x)* glx)= f(m)g(x —m), —co < x < oo

=



Example

f(m) g(m)
. 5 samples | 3 samples

flx)*g(x)= ;E fim)g(x —m), —co < x < oo



Example (cont’d)

Compute the convolution
assuming discrete values
for x,

—oo = X < oo




Example (cont’d)

x=—4orx<-—4
1 ® ¢ 9@ 9 9 99

no overlap . b i i f*g:O

4 3 2 1 0 1 2

Note that I show some
o o o o' o o redsamples “taller” for clarity!
x=-3
f*g=1




Example (cont’d)

o8 8§ oo
v=-2 O e

f*g=3




Example (cont’d)
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X f*g=3
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Example (cont’d)
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x=2 I f*g=2
> 1 0 1 2 3
o 9 908 oo

= L e
> 1 0 1 2 3 4
x>4 frg =0

no overlap



Example

o &0
f(m) g(m)
® 02
| 1 1
® 0709 * 7 ? ?
H ! ! ! * 1 ! — i H
-2 -1| 0 1| 2| -1 0 1 3-2-10 12 3
5 samples 3 samples 7 samples

length of  =lengthof + lengthof - 1



Convolution in Discrete Case

Input sequences:

{f0). f(D)..... f(4-1D)}. {g(0), g(1). .... g(B-1)}

Length of f*g sequence is: M=A+B-1

input sequences: make them length M by padding with zeroes:

flx) 0=x=A4-1 g(x) 0=2x=B-1

X)= g )=
Je() 0 A<x<M-1 () 0 B<xyxsM-1



Discrete 2D convolution

Suppose f(x,y) is A x B and g(x,y) is
The size of f(x,y) * g(x,y) would be N x M where
N=A+C-1 and M=B+0-1

Form images (i.e., pad with zeroes):
Fley) = flx.v) 0f£x<£A4-land0sv=B-1
ABYEY 0 4<x<M-1andB<y<N-1

gx.vy) 0=x<C-land0<v<D-1
0 C<x=sM-landD<ysN-1



Discrete 2D convolution

e The convolution holds for the 1mages
M-1 N-1
fo(x.v) Fg.(x.v)= 2 X f.(m.mg,(x—m.yv—n)
m=0 n=0

(x=0,1,....M—-1,y=0,1.....N=1)



Image filtering

Image filtering: compute function of local neighborhood at each position

Really important!

Enhance images

Denoise, resize, increase contrast, etc.
Extract information from images

Texture, edges, distinctive points, etc.

Detect patterns

Template matching



Today: Image Filters

Smooth/Sharpen Images...



Motivation: noise reduction

7 How could we reduce the noise, i.e., give an estimate of the true intensities?

7 What if there’s only one image?




Filtering

Filter term in “Digital image processing” is referred to the subimage

Others terms - mask, kernel, template, or window
The value in a filter subimage are referred as coefficients, rather than pixels.

The word “filtering” has been borrowed from the frequency domain.

Origin Y

B E Y

Spatial filtering term is the filtering

3 % 3 neighborhood of (x. v)

operations that are performed directly
on the pixels of an image

Spatial domain



Mechanics of spatial filtering

Need to define:

(1) a neighborhood (or mask) - Typically, rectangular and its size is much

smaller than that of f(x,y)
e.g. - 3x3 or 5x5

(2) an operation

e.g. - weighted sum of input pixels



Mechanics of spatial filtering

The process consists simply of moving the center of the filter mask from point

to point in an image.

At each point (x,y) the response of the filter at that point is calculated using

a predefined relationship

Area or Mask Processing Methods

maSk input image output image .
weights:
1| =2 =3
] T - el g(x.y) = T[f(x.y)]
-I|Irl 1|'|I2 wa R e e —— = =T
r————— T operates on a
wad | WS Wi neighborhood of pixels
WT | w3 WS




Convolution In 2D Hlu, v 1111
I 1

“11] 4

1011

Flz, y] Glz, y]

Source: S. Seitz



Convolution In 2D

Flz, y] Glz, y.

Source: S. Seitz



Convolution In 2D

Flz, y]

Glz,y.

10

20

Source: S. Seitz



Convolution In 2D

Flz, y]

Glz,y.

10

20

?ﬂ

Source: S. Seitz



Convolution In 2D

Flz, y]

Glz, y]

10

20

30

E‘I

ource: S. Se

1tz



Convolution In 2D

Source: S. Seitz



Correlation filtering

Say the averaging window size 1S 2k+1 X 2k+1:

. 1
G[z,g]—(2k+1)2 zzm_z_ Fli+u.j + ]

)\ J
! |

Attribute uniform Loop over all pixels in
weight to each neighborhood around image pixel

pixel Flij]
Now generalize to allow different weights depending on

neighboring plxel’s relatlve position:

Gli, 5] = Z Z H[u v]F[z—I—uj—I—v]

w=—kv=—k —
Non-uniform weights




Averaging filter

1 What values belong in the kernel H for the moving average example?

10

Hlu,v]
111
1
—11(72]1
111

“box filter”

G=HQXF




Mechanics of spatial filtering

71 Handling Pixels Close to Boundaries

000

pad with zeroes

EERE
1

or




Boundary issues

What is the size of the output?

Full Same Valid

Source: S. Lazebnik



Boundary issues

7 What about near the edge?

the filter window falls off the edge of the image

r

need to extrapolate

methods:

» clip filter (black)
» wrap around
» copy edge

» reflect across edge

8

Glz, ] Reflect

: S. Marschner




Linear vs Non-linear filter

If the computations performed on the pixels of the neighborhoods are linear,

the operation is called linear spatial filtering;

Linear - when the output is a weighted sum of the input pixels.

otherwise it is called nonlinear spatial filtering.

e.g.

zo=max(zy, k=1,2,..., 9)



Linear spatial filtering

The result 1s the sum of products
of the mask coefficients with the
corresponding pixels directly

Pixels of image

w(-1,-1)

f(x-1,y-1)

w(-1,0)

f(x-1,y)

w(-1,1)

f(x-1,y+1)

w(0,-1)

f(x,y-1)

w(0,0)

f(x,y)

w(0,1)

f(x,y+1)

under the mask

Mask coefficients

w(l,-1)

fix+1,y-1)

w(1,0)

f(x+1,y)

w(l,1)

f(x+1,y+1)

w(-1,-1)

w(-1,0)

w(-1,1)

w(0,-1)

w(0,0)

w(0,1)

w(l,-1)

w(1,0)

w(l,1)

gx,y)= w1L,-1Df(x—-Ly—-1D)+w-=LO) f(x—Ly)+w(-LD) f(x—1y+1)+
w(0,—1) f(x,y—1)+w(0,0) f(x,y)+w(0,1) f(x,y+1)+
wl,L—Df(x+Ly—-1D+wl0)f(x+1,y)+wl]) f(x+1,y+1)



Linear Spatial Filtering Methods

Main linear spatial filtering methods:
Correlation

Convolution



Correlation
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Convolution

Flip the filter in both dimensions (bottom to top, right to left)

Then apply cross-correlation

g(x,y) = Zzh(s t)f(x—a,y—Db)

g(x,) —Shfﬁc,y)/*f(x,y) K3

Notation for convolution
operator

* Note: if w(i, j) is symmetric, that is w(i, j) = w(-i,-j), then
convolution is equivalent to correlation!



Properties of convolution

Linear & shift invariant

Commutative:

f*g=g*f

Associative

(f*g)*h=1F%(g™h)

|dentity:

unit impulse e =[...,0,0,1,0,0, ...]. f*e=1f

Differentiation:



Convolution properties

Commutative:a * b =b * a
Conceptually no difference between filter and signal

But particular filtering implementations might break this equality,
e.g., image edges

Associative: a * (b * ¢) = (a * b) * ¢
Often apply several filters one after another: (((a * b,) * b,) * b,)

This is equivalent to applying one filter: a * (b, * b, * b,)

Correlation is _not_ associative (rotation effect)
Distributes over addition: a * (b + ¢) = (a * b) + (a * ¢)
Scalars factor out: ka * b = a * kb = k (a * b)

|dentity: unit impulse e = [0,0,1,0,0],a *e = a

Source: S. Lazebnik



Properties of Linear SHIFT INVARIANT

* Amplitude properties:

— Additivity S[filn,m] + f;[n,m]] = S[fi[n,m]] + S[f;[n, m]]
Meaning: The response to the sum of two inputs 1s the sum of their individual responses.
—Homogeneity Slaf;[n, m]] = aS[f;[n, m]]]

— Superposition

Slafiln,m] + Bfjln, m]| = asS|filn, m]| + BS[f;[n, m]]

Shift invariance:

fln —mno,m — mo = gln —no,m —mo

Meaning: Shifting the input shifts the output by the same amount without changing the system’s behavior.



Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Flx, y] Glx, y]



Filtering an impulse signal - correlation

What 1s the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Flx, y]




Filtering an impulse signal - Convolution

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Flx, y]




Separability

In some cases, filter is separable, and we can factor into two steps: e.qg.,

Convolve all rows

Convolve all columns

2 [3]3 11
1211 3 |5 |5 18
g
4 |4 |6 18
1 11
f 2 18 65
1 18
1] x [1]2]1 1 ]2 |1 2 [3]3 =2+6+3=11
2 = |2 |4 |2 3|55 =6+20+10=36
1 112 |1 4 la s =4+8+6=18

65

f*(g*h=>F*g*h



Separability

What is the computational complexity advantage for a separable filtering terms of
number of operations per output pixel?

Filtering an M-by-N image with a P-by-Q filter kernel requires roughly MNPQ multiplies
and adds (assuming we aren't using an implementation based on the FFT).

If the kernel is separable, you can filter in two steps.
The first step requires about MNP multiplies and adds.

The second requires about MNQ multiplies and adds
for a total of MN(P + Q).

The computational advantage of separable convolution versus nonseparable convolution
is therefore: PQ/(P+Q)

For a 9-by-9 filter kernel, that's a theoretical speed-up of 4.5.



Correlation (cont’d)

Often used 1n applications where we need to measure the similarity
between 1mages or parts of images
(e.g., template matching).




Example

Correlation:

Convolution:




How do we choose the mask weights?

Typically, by samplina certain functions:

1t 2nd derjvative

derivative

- _———— e - ‘A-- - e

Gaussian




Filters for Image Enhancement

We will mainly focus on two types of filters:
Smoothing (low-pass)

Sharpening (high-pass)



Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise reduction.

Blurring is used in preprocessing steps, such as removal of small details from an image prior
to object extraction, and bridging of small gaps in lines or curves

Noise reduction can be accomplished by blurring
Reduce “sharp” transitions in intensities

smoothing of false contours

There are 2 way of smoothing spatial filters
Smoothing Linear Filters

Order-Statistics Filters



Smoothing Linear Filters

Simply the average of the pixels contained in the neighborhood of the mask.
Sometimes called “averaging filters™

Two 3x3 Smoothing Linear Filters

1171 11211
1 1
X 1|11 e 2142
11171 11211

Standard average Weighted average



Smoothing Linear Filters

5x5 mask

1 y
_X 1
25 1

The general implementation for filtering an MxN image with a weighted
averaging filter of size mxn is given by the expression

Za: Zh(s,t)f(x—s,y—t)

g(x9y): a b




Smoothing Linear Filters - example

7 Mask size determines the degree of

smoothing (loss of detail).

original

5x5

15x15

‘.......

FegtiE e
P e
e

aaaaaaadd

28
TS

aaaaaadaadad

‘...-...

sos a 33
[T

aaaaaaadd

see a 9x9
I

aailauaaa

wd
(T

1!-‘]&.3“&!

R R

d
35x35

ML

R I
- |




Smoothing Linear Filters - example

Example: extract largest, brightest objects

15 x 15 averaging image thresholding




Smoothing filters: Gaussian filter

This kernel is an approximation of a Gaussian function:

1 _ultv?
_ T e 252
o2

h(u,v) =

mask size 1s

: height = width = 5o (subtends 98.76% of the area)
a function of o:

x 7 Ganssian mask

-1

o o

b

P —

—_—
—~
-
e D &~ OO b= o o
— e D DD DO e -

i S I S R N S S

_—— S o
_— Y = o

0o U9 = OO e
v

Source: S. Seitz



Gaussian filter

Weight contributions of neighboring pixels by nearness

0.003
0.013
0.022
0.013
0.003

0.013 0.022 0.013 0.003
0.059 0.097 0.059 0.013
0.097 0.159 0.097 0.022
0.059 0.097 0.059 0.013
0.013 0.022 0.013 0.003

5x5 0c=1
1 4 7 4 1
4 20 33 20 4
7 33 55 33 7
4 20 33 20 4
1 4 7 4 1

Slide credit: Christopher Rasmussen



Gaussian filters

What parameters matter here?

Size of kernel or mask

Note, Gaussian function has infinite support, but discrete filters use finite kernels

2 4 E & 10

T Py

I

0008 [«
10

=75 with 10 x 10
kernel kernel



Gaussian filters

What parameters matter here?

Std Deviation of Gaussian: determines extent of smoothing

o =2 with 30 o = 5 with 30
x 30 kernel x 30 kernel



Smoothing filters: Gaussian (cont’d)

| riginal Image /q\

Smélll c Large o

Limited smoothing Strong smoothing



Gaussian filters

Remove “high-frequency” components from the image (low-pass filter)
Images become more smooth
Convolution with self is another Gaussian

Prove it.

So can smooth with small-width kernel, repeat, and get same result as larger-width

kernel would have

Convolving two times with Gaussian kernel of width ¢ is same as convolving once with
kernel of width oV?2

Separable kernel

Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
G,(x — 1 207
(X.y) = 52 SXP :
1 x> y°
_ (f - 72) 1 g 22
V2To V2mo

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Nonlinear spatial filtering

Nonlinear spatial filters also operate on neighborhoods, and the mechanics
of sliding a mask past an image are the same as was just outlined.

The filtering operation is based conditionally on the values of the pixels in
the neighborhood under consideration



Order-Statistics Filters

nonlinear spatial filters

response is based on ordering (ranking) the pixels contained in the image area
encompassed by the filter, and then replacing the value of the center pixel with
the value determined by the ranking result.

Best-known “median filter”

Good noise-reduction capabilities with less smoothing (e.g. impulse noise, or salt-and-pepper
noise )



Non-linear smoothing

Median filter
10 15 20
20 100 | 20
20 20 25

Corp region of neighborhood

Sort the values of the pixel in our
region

In the mxn mask the median is
(mxn div 2)+1

10, 15, 20, 20, 20, 20, 20, 25, 100

5th

2(x,y)=median{ f (s,t)}

(S,Z‘)EVV(XJ)



Non-linear smoothing

Median filter
10 15 20
20 100 | 20
20 20 25

10, 15, 20, 20, 20, 20, 20, 25, 100

5th

It is widely used as it is very
effective at removing noise while
preserving edges.

It is particularly effective at
removing ‘salt and pepper’ type
noise.



Smoothing filters: Box filter

This kernel is an approximation of a Gaussian function:

0
0
0
0
0
0
0
0
0 1010 (10| O
0

O 0ol ojlo/lolo|lo| o o
O 0ol ojlojlo/lo|lo|oOo | O | O
O ol ojlojlo/lolo|lo| o o

Source: S. Seitz



Smoothing filters: Gaussian filter

This kernel is an approximation of a Gaussian function:

0
0
0
0
0
0
0
0
0
0

O 0ol ojlo/lolo|lo| o o
O 0ol ojlojlo/lo|lo|oOo | O | O
O ol ojlojlo/lolo|lo| o o

Source: S. Seitz



ian filter

: Med

lters

f

Smoothing

0

0

o
o
(o)}
o
(e)]
o
(o)}
o

0
0
0

0} 90 | 90 | 90 | 90 | 90

0
0
0

0} 90 | 90 | 90 | 90 | 90

0} 90 | 90 | 90 | 90 | 90 o

Ol 90 | 90 | 90 W

0

(0l 90 (90 | 90 | 90 | 90 o]
(0l 90 (90 | 90 | 90 | 90 o]
(0l 90 (90 | 90 | 90 | 90 o]

(0l 90 (90 | 90 | 90 | 90 o]

Source: S. Seitz




Non-linear smoothing- Median filtering

nonlinear

median{ x(m) + y(m) } # median{x(m)} + median{y(m)}
Odd window size is commonly used

3x3, 5x5, 7x7

5-pixel “*"-shaped window
for even-sized windows take the average of two middle values as output
resilient to statistical outliers
incurs less blurring

simple to implement

-118-



Median filter example

—r .
A \'s

- i

ﬂll\hhh '

,', 1‘..4:.". p
A
" =3 (.-',m,

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.

Joseph E. Pascente, Lixi, Inc.)



median filter

median (f)

Noisy Image
3x3 neighborhood



Degraded Image

Source: Freeman and Durand



3x3 median filter

Source: Freeman and Durand



Noise — Salt and Pepper Jack




Mean Jack — 3 x 3 filter




Very Mean Jack =11 x 11 filter




Noisy — Salt and Pepper Jack




Median Jack — 3 x 3




Order statistics filters

1 Other order statistics:

o1 Min filter, max filter, x-percentile ... o T
original

g(x,y) = medzan{f(s 1)} g(x,y)= min {f(s,?)} g(x, )’)_ max {f(s,?)}

W,
(.0)W, ) (5:0)W 1 ) )W 23



Sharpening Spatial Filters

The principal objective
highlight fine detail in an image or to enhance detail that has been blurred
either in error or as an natural effect of a particular method of image acquisition.

Normally, sharpening is done by highlighting the transitions in intensity
Methods

Unsharp masking
High Boost filtering
Laplacian (2" order derivative)

Gradient (1" order derivative)



Unsharp masking and High boost Filtering

Blur the original image f(x,y)

Subtract the blurred image /Elri:_:in;nlsi;_rlm[

J(x,¥) from the original (result called the

mask): )
& mask (-xa Y) — f(x, y)—f(x,y) Al'l'ﬂliﬁigll;lt

Add the mask to the original:

Unsharp mask

g, y)=f (x5, ) +kxg, (X)) o

NS
L~ N
I+ I+a-(I-1)=(1+a)-I—a-1.
o j——] —>—b~n%|=re|+|e—me|-sk-i1°rg Sharpened signal
*k > 1 => highboost filtering




Example

Original

Unsharp Mask High boost



Example

Gaussian
blurring kernel

Gray Value

min

Distance (pixels)

150

(C) o= 10.0



Foundation

Definition of 15 / 2"d derivative

A basic definition of the first-order derivative of a one-dimensional
function f(x) is

o

—~ =]im
ax h—0

f(x+h)—f(x)
a - 2= fx+1)— f(x) (h=1)

We define a second-order derivative as the difference

o°J f(x+D)+ f(x—D-2f(x).

Ox” B




Finite differences

High-school reminder: definition of a derivative using forward
difference

Fa) — g @) = @)

h—0 h

Alternative: use central difference

, . .. flz+0.5h) — f(z —0.5h)
fle) = jim, h

For discrete signals: Remove limit and set h = 2

fi(z) =

What convolution

f(:L‘ + ]_) — f(g_'; — ]_) kernel does this

correspond to?

-1{0 |1

J]O-]




Gray-level profile

OHDNWKR Lo




Intensity Lansition
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Analyze

Both derivative is zero for constant areas

The 1%"-order derivative is nonzero along the entire ramp, while the 2"-
order derivative is nonzero only at the onset and end of the ramp.

The response at and around the step point is much stronger for the 2"9- than
for the 1¥"-order derivative

Edges in digital images often are ramp like

1t derivative make thick edge and 2" derivative make a thin double edge

2"d derivative is better than 15t to enhance fine detail



The Laplacian (2" order derivative)

Shown by Rosenfeld and Kak[1982] that the simplest isotropic derivative
operator is the Laplacian is defined as

o’ f 0
Vf = ]: + ]:
ox~ oy

Discrete form of derivative

Jx-1Ly) || fixy) || f(x+1y)

Zf—f(x+1,y>+f<x—1,y>—2f<x,y>

fey-1 .
fxy) gy{ =, y+D+ f(x,y—1D)—=2f(x,y)

Jey+D)




The Laplacian - mask

The digital implementation of the 2-D Laplacian is obtained by
summing 2 components

Vif=fx+Ly)+ fx=Ly)+ [y +D)+ f(x,y =D =4/ (x, )

O] OO o 110 110
1]1-2 |1 + 0(-21|0 = 1] - 1
O] OO o 110 110
Edges can be found
by detect the zero-crossings
2191 9 2195 | 5 e - - - |-
2191 9 9| 5| 5 -10 9 2| 5 |-
2191010 | 10 | 10 -1 5 [-10 |-5 [-5 | -
515 (10] 10| 10| 10 -1 5 (-10 1 0|0 |-
219 5 |10]10 |10 -1 0110 |-10| O |-
2|19 5 5 | 10 | 10 = ] = . : = | =




The Laplacian - mask

Isotropic mask

[sotropic mask ) _
b with 45° rotation

with 90° rotation

. Increment
Increment
A 1111
1 | -8 1

1111
>




Laplacian mask

O variants

| 1
—_ N =

DO DO DO

—_ N =
| |




Sharpening using Laplacian

a(x,y) = {f (x, ) =WV f(x,¥) [fthe center coefficient is negative
F(x,»)+wVf(x,y) If the center coefficient is positive

Where {(x,y) 1s the original image
V’f(x,»)is Laplacian filtered image
g(x,y) 1s the sharpen 1image
w 1s sharpening strength

O0-1]0 -1 -1]-1
-115 -1 -119 |-1




Laplacian - Example

Laplacian without scaling

0O -1]0
-1 4 -1
01-1]0 with scaling




Sharpening: Laplacian - example

Original Sharpened with Laplacian



The Gradient (15 order derivative)

First Derivatives in image processing are implemented using the magnitude of the
gradient. "of
. . . G A

The gradient of function f(x,y)is vyr—| = |=| X
T=lq o

The magnitude of this vector g o

mag(Vf) = \/Gf + Gy2

Gradient is a linear but not rotation invariant (isotropic)
Magnitude is not linear, but 1s 1sotropic
G)C

Approximation mag(V) = |G |+ ‘Gy‘

Isotropic property lost (in
general)



Sobel’s Method

1 Mask of even size are awkward to apply.

1 The smallest filter mask should be 3x3.

VI = |(Z7 +2z,4+24)—(z,+22z, +Z3)|+|(Z3 +2z,+2zy)—(z,+2z, +Z7)|




The Sobel filter

Horizontal Sober filter:

1[{0]-1 1
210(-2 _ 2

= %
1[{0]-1 1

Vertical Sobel filter:

121 1
olo]o _ 0
1 [-2[-1 ]

local gradient components are obtained from
the filter results by appropriate scaling




which Sobel filter?

u»; \
=

=———— ————,
— —
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which Sobel filter?

origina

Sobel filter example

Vertical

horizontal



Example: Gradient Magnitude Image

Gradient Magnitude

.\/ of* o’
E d'*l

(isotropic)
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Combining Spatial Enhancement Methods

An example
Laplacian to highlight fine detail
Gradient to enhance prominent edges
Smoothed version of the gradient image used to mask the Laplacian image

Increase the dynamic range of the gray levels by using a gray-level transformation



Application

a) original
b) Laplacian
c)a+b

d) Sobel

e) Avg of d

f) c*e
g) atf
h) y transform




Think-Pqir-Shq re * = Convolution operator

Hoiem






Jitter Filter

Exercise 5.14. The “jitter” filter is a (quite exotic) example for a
nonhomogeneous filter. For each image position, it selects a space-
variant filter kernel (of size 2r + 1) containing a single, randomly

placed impulse (1); for example,

o O O O O

oo o OO

oo O oo

oo OO -

oo O O O

(5.49)

for r = 2. The position of the 1-value in the kernel H,, , is uniformly
distributed in the range i, j € [—r,r|; thus the filter effectively picks
a random pixel value from the surrounding (2r + 1) x (2r + 1) neigh-
borhood. Implement this filter for » = 3, 5, 10, as shown in Fig. 5.24.
Is this filter linear or nonlinear? Develop another version using a

(zaussian random distribution.



Jitter Filter - example




Adaptive Filtering

The convolution is a non-adaptive filtering in the sense that the convolution mask is space
invariant.

Adaptive filtering refers to image operations that adapt their performance based on the input
signal.

Example for adaptive-filtering: The Bilateral Filter



Obijective of bilateral filtering

Smooth texture

Preserve edges



lllustration a 1D Image

1D image = line of pixels

Better visualized as a plot

— 1

08
pixel | | s |-

intensity | | |
0.2
I 0 ] | | | ] |

0 20 40 60 80 100 120
pixel position



Gaussian Filter

Smooth edges

slide from Darya Frolova and Denis Simakov




Bilateral Filter

(&/Q,/\

. TjcaWslo - DWe(f — ) f

A fo = ;
1 P Zjeg Ws(p _])VVr(fp _fj)
. W(t) = e 2%

Preserves discontinuities

slide from Darya Frolova and Denis Simakov



Higher-dimensional Space

higher dim. Gaussian

“Product of two Gaussians




Definition

Gaussian blur

1

08 K*LWWNAVJ\ Ig — j;]cﬂg(l)"QHﬂfd
06 |- q€eS space

04
03 Mlai\/

0

* only spatial distance, intensity ignored

*space™
Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

08 ].

R s B = || el ]l
04 b P lqes space

oz v~ wAl normalization

» spatial and range distances
* weights sum to 1

Ip B Iq|) Iq




Normalizing constant

|
- 20 (Ip=aG, (1,1,

p

BF[I], =

w,= G, (lp-al)G, (11, ~1,)

qes




Typical bilateral weighting functions:

(559)

Ws(p—q) =e ‘2%
(fptay

W (fp fq) =e \ %o

Slide from F. Durand



Gaussian Filtering:

4 p
‘%@é"’ ”

( ”

Slide from F. Durand



Bilateral Filtering:

Slide from F. Durand



Bilateral weights:

from P. Milinfar.



Bilateral Filter is Expensive

Brute-force computation is slow
(several minutes)

Two nested for loops:
for each pixel, look at all pixels

Non-linear, depends on image content
= no FFT, no pre-computation...

Fast approximations exist
O Significant loss of accuracy

O No formal understanding of accuracy versus speed



Gaussian Smoothing




Bilateral (edge-preserving) Smoothing
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Ref.

Digital Image Processing, 4™ ed, Gonzalez & Woods

Chapter 5 of Digital Image Processing using Java
By - Wilhelm Burger ®* Mark J. Burge

www.cs.su.ac.th/~kanawong/courses /517483 /ppt/Spatial Filtering.ppt
www.cse.unr.edu\~bebis\CS474\ Lectures\SpatialFiltering.ppt
www.acfrusyd.edu.au\courses\amme4710\Lectures\AMME47 10-Chap3-SpatialFiltering.pdf
www.csie.nuk.edu.tw\~tkyin\2016Spring\ImageProcessing2016Spring\Slides\3\chap3.ppt


http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
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