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General Image Operations 

 Three type of image operations

1. Point operations

2. Geometric operations

3. Spatial operations

4. Global Operations (Freq. domain)

5. Multi-Resolution Operations



Point Operations 

( ) ( )( ), ,g x y T f x y=



Point Operations 

• Operation depends on Pixel's value.

• Context free (memory-less).

• Operation can be performed on the Histogram.

• Example:

( ) ( )  += yxfyxg ,,



Geometric Operations 

( ) ( )( ), ,g x y f T x y=



Geometric Operations 

• Operation depend on pixel's coordinates.

• Context free.

• Independent of pixels value.

• Example:

( ) ( )byaxfyxg ++= ,,



Spatial Operations 

( ) ( ) ( ) ( ), , |( , ) ,g x y T f i j i j N x y= 



Spatial Operations 

• Operation depends on Pixel's value and coordinates.

• Context dependant.

• Spatial v.s. Frequency domain.

• Example:

( ) ( ) njifyxg
yxNji
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Global Operations
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Global Operations
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Image domain

Freq. domain



Multi-Resolution 

12

High resolution

Low resolution



Convolution 

and

Correlation



1D Continuous Convolution

 Convolution is defined as follows:

 Convolution is commutative:

Think of f(x) as the

image and g(x) as the

mask although you can

reverse their roles!

1. Flip g(a) → g(-a)

2. Shift g(x-a) 

3. Compute area overlap 

f(a)g(x-a)

x−   



Example 1



Example 2

 Compute the convolution of the following two functions:



Example 2 (cont’d)

x-1



Example 2 (cont’d)

Step 3: Compute the integral for x− 



Example 2 (cont’d)



Important Observations

 The extent of f(x) * g(x) is equal to the extent of f(x) plus the extent of g(x)

extent = 1 extent = 1

extent = 2



Important Observations (cont’d)

 For every x, the limits of the integral are determined as follows:

 Lower limit: MAX (left limit of f(x), left limit of g(x-a))

 Upper limit: MIN (right limit of f(x), right limit of g(x-a))



Example 3

α α

width = 2 width = 3



Example 3 (cont’d)



Example 3 (cont’d)



Discrete Convolution

 Replace integral with summation

 Integration variable becomes an index.

 Displacements take place in discrete increments



Example

5 samples 3 samples

f(m) g(m)

-1      0     1-2      -1      0     1      2

1 1

*



Example (cont’d)

f(m) g(m)

-1      0     1-2      -1      0     1      2

1 1

-1      0     1

1

-1      0     1

1

g(-m)

g(x-m)

x

Compute the convolution

assuming discrete values

for x, 



Example (cont’d)

-4    -3    -2     -1       0     1      2

1

x

4 4x or x= −  −

-3     -2      -1     0     1      2

1

x

3x = −

f *g = 0

f *g = 1

no overlap

Note that I show some

red samples “taller” for clarity! 



Example (cont’d)

-2      -1      0     1      2

1

x

2x = −

1x = −

f *g = 2

f *g = 3

-2      -1      0     1      2

1

x



Example (cont’d)

0x =

1x =

f *g = 3

f *g = 3

-2      -1      0     1      2

1

x

-2      -1      0     1      2

1

x



Example (cont’d)

2x =

3x =

f *g = 2

f *g = 1

-2      -1      0     1      2        3    4

1

x

-2      -1      0     1      2       3

1

x

4x  f *g = 0

no overlap



Example

5 samples 3 samples

f(m) g(m)

-1      0     1

1 1

* =

7 samples

-3   -2   -1   0     1   2    3

2

1

-2   -1   0     1   2    

length of f*g = length of f +   length of g - 1

3



Convolution in Discrete Case

 Input sequences:

 Length of f*g sequence is: M=A+B-1

 Extended input sequences: make them length M  by padding with zeroes:



Discrete 2D convolution

 Suppose f(x,y) is A x B and g(x,y) is C x D

 The size of f(x,y) * g(x,y) would be N x M where

N=A+C-1 and M=B+D-1

 Form extended images (i.e., pad with zeroes):



Discrete 2D convolution 

• The convolution holds true for the extended images only!



Image filtering

 Image filtering: compute function of local neighborhood at each position

 Really important!

 Enhance images

➢ Denoise, resize, increase contrast, etc.

 Extract information from images

➢ Texture, edges, distinctive points, etc.

 Detect patterns

➢ Template matching



Today: Image Filters

Smooth/Sharpen Images...      Find edges...                  Find waldo…



Motivation: noise reduction

 How could we reduce the noise, i.e., give an estimate of the true intensities?

 What if there’s only one image?



Filtering

 Filter term in “Digital image processing” is referred to the subimage

 Others terms - mask, kernel, template, or window

 The value in a filter subimage are referred as coefficients, rather than pixels.

 The word “filtering” has been borrowed from the frequency domain.

 Spatial filtering term is the filtering 

operations that are performed directly 

on the pixels of an image



Mechanics of spatial filtering

Need to define:

(1) a neighborhood (or mask) - Typically, rectangular and its size is much 

smaller than that of f(x,y)

◼e.g. - 3x3 or 5x5

(2) an operation

◼e.g. - weighted sum of input pixels



Mechanics of spatial filtering

 The process consists simply of moving the center of the filter mask from point 

to point in an image.

 At each point (x,y) the response of the filter at that point is calculated using 

a predefined relationship

output imagemask

weights:



Convolution In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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111

111



Convolution In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Convolution In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Convolution In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Convolution In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Convolution In 2D

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in 

neighborhood around  image pixel 

F[i,j]

Attribute uniform 

weight to each 

pixel
Now generalize to allow different weights depending on  

neighboring pixel’s relative position:

Non-uniform weights



Averaging filter

 What values belong in the kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?



Mechanics of spatial filtering

 Handling Pixels Close to Boundaries

pad with zeroes

or

0 0 0 ……………………….0

0
 0

 0
 …

…
…

…
…

…
…

…
…

.0



Boundary issues

 What is the size of the output?

f

gg

gg

f

gg

gg

f

gg

gg

Source: S. Lazebnik

Full Same valid



Boundary issues

 What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods:

➢ clip filter (black)

➢wrap around

➢ copy edge

➢ reflect across edge

Source: S. Marschner
ClipWrapCopyReflect



Linear vs Non-linear filter

 If the computations performed on the pixels of the neighborhoods are linear, 

the operation is called linear spatial filtering; 

 Linear - when the output is a weighted sum of the input pixels.

 otherwise it is called nonlinear spatial filtering.

 e.g. 



Linear spatial filtering

f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x,y-1) f(x,y) f(x,y+1)

f(x+1,y-1) f(x+1,y) f(x+1,y+1)

w(-1,-1) w(-1,0) w(-1,1)

w(0,-1) w(0,0) w(0,1)

w(1,-1) w(1,0) w(1,1)

The result is the sum of products 

of the mask coefficients with the 

corresponding pixels directly 

under the mask

Pixels of image

Mask coefficients

w(-1,-1) w(-1,0) w(-1,1)

w(0,-1) w(0,0) w(0,1)

w(1,-1) w(1,0) w(1,1)

)1,1()1,1(),1()0,1()1,1()1,1(

)1,()1,0(),()0,0()1,()1,0(

)1,1()1,1(),1()0,1()1,1()1,1(

+++++−+−

++++−−

++−−+−−+−−−−

yxfwyxfwyxfw

yxfwyxfwyxfw

yxfwyxfwyxfw=),( yxg



Linear Spatial Filtering Methods

 Main linear spatial filtering methods:

 Correlation

 Convolution



Correlation

Output

Image

w(i,j)

f(i,j)

g(i,j)



Convolution

 Flip the filter in both dimensions (bottom to top, right to left)

 Then apply cross-correlation

Notation for convolution 

operator

h

f


−= −=

−−=
a

as

b

bt

byaxftshyxg ),(),(),(

),(    ),(),( yxfyxhyxg = 

h

• Note: if w(i, j) is symmetric, that is w(i, j) = w(-i,-j), then 
convolution is equivalent to correlation!



Properties of convolution

 Linear & shift invariant

 Commutative:

f * g = g * f

 Associative

(f * g) * h = f * (g * h)

 Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …].  f * e = f

 Differentiation:



Convolution properties

• Commutative: a * b = b * a

 Conceptually no difference between filter and signal

 But particular filtering implementations might break this equality, 
e.g., image edges

• Associative: a * (b * c) = (a * b) * c

 Often apply several filters one after another: (((a * b1) * b2) * b3)

 This is equivalent to applying one filter: a * (b1 * b2 * b3)

 Correlation is _not_ associative (rotation effect)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a
Source: S. Lazebnik



Properties of Linear SHIFT INVARIANT

Shift invariance:

• Amplitude properties:

–Additivity

–Homogeneity

–Superposition

Meaning: The response to the sum of two inputs is the sum of their individual responses.

Meaning: Shifting the input shifts the output by the same amount without changing the system’s behavior.



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F 

with the arbitrary kernel H?

?



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Filtering an impulse signal - correlation

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F 

with the arbitrary kernel H?

i h g

f e d

c b a



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Filtering an impulse signal - Convolution

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F 

with the arbitrary kernel H?

a b c

d e f

g h i



g

h

f

Separability

 In some cases, filter is separable, and we can factor into two steps: e.g., 

 Convolve all rows

 Convolve all columns

f * (g * h) = (f * g) * h 



Separability

 What is the computational complexity advantage for a separable filtering terms of 
number of operations per output pixel?

 Filtering an M-by-N image with a P-by-Q filter kernel requires roughly MNPQ multiplies 
and adds (assuming we aren't using an implementation based on the FFT). 

 If the kernel is separable, you can filter in two steps. 

 The first step requires about MNP multiplies and adds. 

 The second requires about MNQ multiplies and adds

 for a total of MN(P + Q).

 The computational advantage of separable convolution versus nonseparable convolution 
is therefore: PQ/(P+Q)

 For a 9-by-9 filter kernel, that's a theoretical speed-up of 4.5.



Correlation (cont’d)

Often used in applications where we need to measure the similarity 

between images or parts of images

(e.g., template matching).



Example

Correlation:

Convolution:



How do we choose the mask weights?

 Typically, by sampling certain functions:

2nd derivative

Gaussian

1st

derivative



Filters for Image Enhancement

 We will mainly focus on two types of filters:

 Smoothing (low-pass)

 Sharpening (high-pass)



Smoothing Spatial Filters

 Smoothing filters are used for blurring and for noise reduction.

 Blurring is used in preprocessing steps, such as removal of small details from an image prior 

to object extraction, and bridging of small gaps in lines or curves

➢ Noise reduction can be accomplished by blurring

➢ Reduce “sharp” transitions in intensities

➢ smoothing of false contours

 There are 2 way of smoothing spatial filters

 Smoothing Linear Filters

 Order-Statistics Filters



Smoothing Linear Filters

 Simply the average of the pixels contained in the neighborhood of the mask.

 Sometimes called “averaging filters”

 Two 3x3 Smoothing Linear Filters

1 1 1

1 1 1

1 1 1

1 2 1

2 4 2

1 2 1


9

1 
16

1

Standard average Weighted average



Smoothing Linear Filters

 5x5 mask

 The general implementation for filtering an MxN image with a weighted 

averaging filter of size mxn is given by the expression

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1


?

1


25

1

( , ) ( , )

( , )

( , )

a b

s a t b

a b

s a t b

h s t f x s y t

g x y

h s t

=− =−

=− =−

− −

=
 

 



Smoothing Linear Filters - example

 Mask size determines the degree of 

smoothing (loss of detail). 3x3

5x5

15x15

9x9

35x35

original



Smoothing Linear Filters - example

15 x 15 averaging image thresholding

Example: extract largest, brightest objects



Smoothing filters: Gaussian filter

 This kernel is an approximation of a Gaussian function:

Source: S. Seitz

σ = 1.4

mask size is

a function of σ:



Gaussian filter

 Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

1 4 7 4 1

4 20 33 20 4

7 33 55 33 7

4 20 33 20 4

1 4 7 4 1



Gaussian filters

 What parameters matter here?

 Size of kernel or mask

 Note, Gaussian function has infinite support, but discrete filters use finite kernels

σ = 5 with 10 x 10 

kernel

σ = 5 with 30 x 30 

kernel



Gaussian filters

 What parameters matter here?

 Std Deviation of Gaussian: determines extent of smoothing

σ = 2 with 30 

x 30 kernel

σ = 5 with 30 

x 30 kernel



Smoothing filters: Gaussian (cont’d)

Small σ Large σ

Limited smoothing Strong smoothing

Original Image



Gaussian filters

 Remove “high-frequency” components from the image (low-pass filter)

 Images become more smooth

 Convolution with self is another Gaussian

Prove it.

 So can smooth with small-width kernel, repeat, and get same result as larger-width 

kernel would have

 Convolving two times with Gaussian kernel of width σ is same as convolving once with 

kernel of width  σ√2 

 Separable kernel

 Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Nonlinear spatial filtering

 Nonlinear spatial filters also operate on neighborhoods, and the mechanics 

of sliding a mask past an image are the same as was just outlined.

 The filtering operation is based conditionally on the values of the pixels in 

the neighborhood under consideration



Order-Statistics Filters

 nonlinear spatial filters 

 response is based on ordering (ranking) the pixels contained in the image area 

encompassed by the filter, and then replacing the value of the center pixel with 

the value determined by the ranking result.

 Best-known “median filter”

 Good noise-reduction capabilities with less smoothing (e.g. impulse noise, or salt-and-pepper 

noise )



Non-linear smoothing

 Corp region of neighborhood

 Sort the values of the pixel in our 

region

 In the mxn mask the median is 

(mxn div 2)+1

10 15 20

20 100 20

20 20 25

10, 15, 20, 20, 20, 20, 20, 25, 100

5th

Median filter

)},({),(
),(),(

tsfmedianyxg
yxWts 

=



Non-linear smoothing

 It is widely used as it is very 

effective at removing noise while 

preserving edges.

 It is particularly effective at 

removing ‘salt and pepper’ type 

noise.

10 15 20

20 100 20

20 20 25

10, 15, 20, 20, 20, 20, 20, 25, 100

5th

Median filter



Smoothing filters: Box filter

 This kernel is an approximation of a Gaussian function:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

Source: S. Seitz

- - - - - - - - - -

- 0 10 20 30 30 30 20 10 -

- 0 20 40 60 60 60 40 20 -

- 0 30 60 90 90 90 60 30 -

- 0 30 50 80 80 90 60 30 -

- 0 30 50 80 80 90 60 30 -

- 0 20 30 50 50 60 40 20 -

- 10 20 30 30 30 30 20 10 -

- 10 10 10 0 0 0 0 0 -

- - - - - - - - - -



Smoothing filters: Gaussian filter

 This kernel is an approximation of a Gaussian function:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

Source: S. Seitz

- - - - - - - - - -

- 0 6 17 23 23 23 17 6 -

- 0 17 51 68 68 68 51 17 -

- 0 23 68 90 90 90 68 23 -

- 0 23 62 79 84 90 68 23 -

- 0 23 56 68 79 90 68 23 -

- 0 17 45 56 62 68 51 17 -

- 6 17 23 23 23 23 17 6 -

- 11 23 11 0 0 0 0 0 -

- - - - - - - - - -



Smoothing filters: Median filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

- - - - - - - - - -

- 0 0 0 0 0 0 0 0 -

- 0 0 0 90 90 90 0 0 -

- 0 0 90 90 90 90 90 0 -

- 0 0 90 90 90 90 90 0 -

- 0 0 90 90 90 90 90 0 -

- 0 0 0 90 90 90 0 0 -

- 0 0 0 0 0 0 0 0 -

- 0 0 0 0 0 0 0 0 -

- - - - - - - - - -



Non-linear smoothing- Median filtering

 nonlinear

 median{ x(m) + y(m) }  median{x(m)} + median{y(m)}

 Odd window size is commonly used

 3x3, 5x5, 7x7

 5-pixel “+”-shaped window

 for even-sized windows take the average of two middle values as output

◼ resilient to statistical outliers

◼ incurs less blurring

◼ simple to implement
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Median filter example



Noisy Image
median (f) 

3x3 neighborhood

median filter



Degraded Image

Source: Freeman and Durand



3x3 median filter

Source: Freeman and Durand



Noise – Salt and Pepper Jack



Mean Jack – 3 x 3 filter



Very Mean Jack – 11 x 11 filter



Noisy – Salt and Pepper Jack



Median Jack – 3 x 3



Order statistics filters

 Other order statistics: 

 Min filter, max filter, x-percentile …
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yxWts 

= )},({max),(
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original



Sharpening Spatial Filters

 The principal objective 

 highlight fine detail in an image or to enhance detail that has been blurred 

➢ either in error or as an natural effect of a particular method of image acquisition.

 Normally, sharpening is done by highlighting the transitions in intensity

 Methods

 Unsharp masking

 High Boost filtering

 Laplacian (2nd order derivative)

 Gradient (1st order derivative)



1. Blur the original image f(x,y)

2. Subtract the blurred image                                                                                                   
from the original (result called the 

mask):

3. Add the mask to the original:

k ≥ 0 

• k = 1 => unsharp masking
• k > 1 => highboost filtering

Unsharp masking and High boost Filtering

),(),(),( yxfyxfyxgmask −=

),( yxf

),( yxf

),(),(),( yxgkyxfyxg mask+=



Example

Original Blurred

Mask (scaled)

Unsharp Mask High boost 



Example

Gaussian 

blurring kernel



Foundation

 Definition of 1st / 2nd derivative

 A basic definition of the first-order derivative of a one-dimensional 

function f(x) is 

 We define a second-order derivative as the difference

).(2)1()1(
2

2

xfxfxf
x

f
−−++=





(h=1))()1(
)()(

lim
0

xfxf
h

xfhxf

x

f

h
−+=

−+
=





→



Finite differences

High-school reminder: definition of a derivative using forward 
difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2
What convolution 
kernel does this 
correspond to?

1 0 -1

-1 0 1 ?

?



Gray-level profile

660 1 2 30 0 2 2 2 2 23 3 3 3 30 0 0 0 0 0 0 0 7 7 5 5

7
6
5
4
3
2
1
0



Foundation



Analyze

 Both derivative is zero for constant areas

 The 1st-order derivative is nonzero along the entire ramp, while the 2nd-
order derivative is nonzero only at the onset and end of the ramp.

 The response at and around the step point is much stronger for the 2nd- than 
for the 1st-order derivative

 Edges in digital images often are ramp like

 1st derivative make thick edge and 2nd derivative make a thin double edge

 2nd derivative is better than 1st to enhance fine detail



The Laplacian (2nd order derivative)

2

2

2

2
2

y

f

x

f
f




+




=

 Shown by Rosenfeld and Kak[1982] that the simplest isotropic derivative 

operator is the Laplacian is defined as

 Discrete form of derivative

),(2),1(),1(
2

2
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f
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
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f(x+1,y)f(x,y)f(x-1,y)

f(x,y+1)

f(x,y)

f(x,y-1)



The Laplacian - mask

 The digital implementation of the 2-D Laplacian is obtained by 

summing 2 components

),(4)1,()1,(),1(),1(2 yxfyxfyxfyxfyxff −−+++−++=

Edges can be found

by detect the zero-crossings



The Laplacian - mask

1

1

-4 1

1

0 0

0 0

0

0

-4 0

0

1 1

1 1

1

1

-8 1

1

1 1

1 1

Isotropic mask 

with 90 rotation 

increment

Isotropic mask 

with 45 rotation 

increment



Laplacian mask

 variants

-1

-1

4 -1

-1

0 0

0 0

0

0

4 0

0

-1 -1

-1 -1

-1

-1

8 -1

-1

-1 -1

-1 -1



Sharpening using Laplacian

2

2

( , ) . ( , )
( , )

( , ) . ( , )

f x y w f x y
g x y

f x y w f x y

 − 
= 

+ 

),(2 yxf

If the center coefficient is negative

If the center coefficient is positive

Where f(x,y) is the original image

is Laplacian filtered image

g(x,y) is the sharpen image 

-1

-1

5 -1

-1

0 0

0 0

-1

-1

9 -1

-1

-1 -1

-1 -1

w is sharpening strength



Laplacian - Example

Original

Laplacian without scaling

with scaling

-1

-1

4 -1

-1

0 0

0 0



Sharpening: Laplacian - example

Original Sharpened with Laplacian



The Gradient (1st order derivative)

 First Derivatives in image processing are implemented using the magnitude of the 

gradient.

 The gradient of function f(x,y) is 

 The magnitude of this vector

 Gradient is a linear but not rotation invariant (isotropic)

 Magnitude is not linear, but is isotropic

 Approximation 
yx GGfmag + )(

22)( yx GGfmag +=

Isotropic property lost (in 

general)


























=







=

y

f
x

f

G

G
f

y

x



Sobel’s Method

 Mask of even size are awkward to apply. 

 The smallest filter mask should be 3x3.

)2()2()2()2( 741963321987 zzzzzzzzzzzzf ++−+++++−++

-1 -2 -1

0 0 0

1 2 1 1

-2

10

0
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2
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The Sobel filter

=

1

2

1

1 0 -1

2 0 -2

1 0 -1

1 0 -1

*

Horizontal Sober filter:

Vertical Sobel filter:

=

1

0

-1

1 2 1

0 0 0

-1 -2 -1

1 2 1

*

local gradient components are obtained from

the filter results by appropriate scaling



Sobel filter example

original which Sobel filter? which Sobel filter?

horizontal Vertical 



Example: Gradient Magnitude Image

Gradient Magnitude

(isotropic)

y

f





x

f







Example: Laplacian vs Gradient

LaplacianSobel



Other operators

 Prewitt

 Scharr

y

x

❑Kirsch



Combining Spatial Enhancement Methods

 An example

 Laplacian to highlight fine detail

 Gradient to enhance prominent edges

 Smoothed version of the gradient image used to mask the Laplacian image

 Increase the dynamic range of the gray levels by using a gray-level transformation



Application

b) Laplacian

a) original

c) a + b

d) Sobel

e) Avg of d

f) c*e

g) a+f

h)  transform



Think-Pair-Share

a) _ = D * B 

b) A = _ * _

c) F = D * _

d) _ = D * D

A B

C

D

E

F

G

H

I

* = Convolution operator

Hoiem



ADAPTIVE FILTERING



Jitter Filter



Jitter Filter - example



Adaptive Filtering

 The convolution is a non-adaptive filtering in the sense that the convolution mask  is space 

invariant.

 Adaptive filtering refers to image operations that adapt their performance based on the input 

signal. 

 Example for adaptive-filtering: The Bilateral Filter



Objective of bilateral filtering

Smooth texture

Preserve edges



Illustration a 1D Image

 1D image = line of pixels

 Better visualized as a plot

pixel

intensity

pixel position



slide from Darya Frolova and Denis Simakov

Gaussian Filter

I

x

I

Smooth edges
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slide from Darya Frolova and Denis Simakov

Bilateral Filter

I

x

I

Preserves  discontinuities

መ𝑓𝑝 =
σ𝑗∈Ω𝑊𝑠 𝑝 − 𝑗 𝑊𝑟 𝑓𝑝 − 𝑓𝑗 𝑓𝑗

σ𝑗∈Ω𝑊𝑠 𝑝 − 𝑗 𝑊𝑟 𝑓𝑝 − 𝑓𝑗

W 𝑡 = 𝑒
−

𝑡2

2𝜎𝑝
2



Higher-dimensional Space

 “Product of two Gaussians” = higher dim. Gaussian

p

space

range



Definition

space range
normalization

space

Gaussian blur

Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]

• only spatial distance, intensity ignored

• spatial and range distances

• weights sum to 1

space

space

ra
n
g
e

p

p

q

q



Normalizing constant
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Typical bilateral weighting functions:

𝑊𝑠 𝑝 − 𝑞 = 𝑒
−

𝑝−𝑞
2𝜎𝑠

2

𝑊𝑟 𝑓𝑝 − 𝑓𝑞 = 𝑒
−

𝑓𝑝−𝑓𝑞
2𝜎𝑟

2

p

q

Slide from F. Durand



Gaussian Filtering:



Slide from F. Durand



Bilateral Filtering:

Slide from F. Durand



= .

= .

= .

from P. Milinfar.

Bilateral weights:



Bilateral Filter is Expensive

 Brute-force computation is slow 
(several minutes)

 Two nested for loops: 
for each pixel, look at all pixels

 Non-linear, depends on image content 
 no FFT, no pre-computation…

 Fast approximations exist [Durand 02, Weiss 06]

 Significant loss of accuracy

 No formal understanding of accuracy versus speed



Gaussian Smoothing



Bilateral (edge-preserving) Smoothing



Noisy 

Image



Gaussian 

Smoothing



Bilateral 

Smoothing



Ref.

 Digital Image Processing, 4th ed, Gonzalez & Woods

 Read this on seriously

 Chapter 5 of Digital Image Processing using Java 

➢ By - Wilhelm Burger • Mark J. Burge

 www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial Filtering.ppt

 www.cse.unr.edu\~bebis\CS474\Lectures\SpatialFiltering.ppt

 www.acfr.usyd.edu.au\courses\amme4710\Lectures\AMME4710-Chap3-SpatialFiltering.pdf

 www.csie.nuk.edu.tw\~tkyin\2016Spring\ImageProcessing2016Spring\Slides\3\chap3.ppt

http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
http://www.cs.su.ac.th/~kanawong/courses/517483/ppt/Spatial%20Filtering.ppt
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